Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Medicine (Baltimore) ; 103(5): e36977, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306576

RESUMO

RATIONALE: Congenital heart disease (CHD) is the most common birth defect and an important cause of noninfectious deaths in infants and children. It has high prevalence globally, placing an enormous burden on society and families. Studies of individuals with hereditary or sporadic CHD have provided strong evidence for its genetic basis. The aim of this study was to identify causative gene variants in a Chinese family with congenital heart disease. PATIENT CONCERNS AND DIAGNOSES: Three generations of a CHD family were recruited. Proband III.9 was diagnosed with congenital heart disease at age 11 months, and the echocardiogram showed arterial ductus arteriosus, with a left-to-right shunt at the level of the arteries. Precedent III.10 was a twin of Proband III.9 who was diagnosed with congenital heart disease at age 11 months, in whom the echocardiogram revealed an arterial ductus arteriosus, an unenclosed patent ductus arteriosus, and a left to right shunt at the level of the arteries (second figure). III.8 was diagnosed with congenital heart disease at age 15, but echocardiography in this study showed no abnormalities. No cardiac abnormalities were detected in any of his parents, grandparents, or maternal grandparents. We performed whole-exome sequencing on CHD sufferers and their unexpressing family members to investigate the genetic causes of CHD in this family line. Exome sequencing identified 4 mutation sites in this family line. The variant c.3245A>G (p.His1082Arg) of the AMER1 gene was consistent with concomitant X-chromosome recessive inheritance, the variant c.238G>C (p.Val80Leu) of the KCNE1 gene was consistent with autosomal accessory inheritance, and the other 2 variants did not conform to the law of the mode of inheritance of the disease. OUTCOMES: The first identified variant, c.3245A>G (p.His1082Arg) of the AMER1 gene, with X-chromosome recessive inheritance, and the variant c.238G>C (p.Val80Leu) of the KCNE1 gene, which has been reported as autosomal dominant, may be the causative agent of CHD in this family line. These findings broaden the genetic scope of congenital heart disease and could help in the development of targeted drugs for the treatment of congenital heart disease.


Assuntos
Permeabilidade do Canal Arterial , Cardiopatias Congênitas , Criança , Lactente , Humanos , Adolescente , Sequenciamento do Exoma , Linhagem , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/diagnóstico , Mutação , Permeabilidade do Canal Arterial/genética
2.
J Med Primatol ; 53(1): e12686, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990472

RESUMO

We performed whole-exome sequencing using a human exome capture kit to analyze the potential genetic factors related to patent ductus arteriosus in Japanese macaques. Compared with the reference sequences of other primates, we identified potential missense variants in five genes: ADAM15, AZGP1, CSPG4, TNFRSF13B, and EPOR.


Assuntos
Permeabilidade do Canal Arterial , Humanos , Animais , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/veterinária , Macaca fuscata , Sequenciamento do Exoma , Proteínas de Membrana/genética , Proteínas ADAM/genética
3.
Am J Med Genet A ; 194(3): e63458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921548

RESUMO

Pathogenic variants in several genes involved in the function or regulation of smooth muscle cells (SMC) are known to predispose to congenital heart disease and thoracic aortic aneurysm and dissection (TAAD). Variants in MYLK are primarily known to predispose to TAAD, but a growing body of evidence points toward MYLK also playing an essential role in the regulation of SMC contraction outside the aorta. In this case report, we present a patient with co-occurrence of persistent ductus arteriosus (PDA) and thoracic aortic dissection. Genetic analyses revealed a novel splice acceptor variant (c.3986-1G > A) in MYLK, which segregated with disease in the family. RNA-analyses on fibroblasts showed that the variant induced skipping of exon 24, which resulted in an in-frame deletion of 101 amino acids. These findings suggest that MYLK-associated disease could include a broader phenotypic spectrum than isolated TAAD, including PDA and obstructive pulmonary disease. Genetic analyses could be considered in families with TAAD and PDA or obstructive pulmonary disease.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Azidas , Desoxiglucose/análogos & derivados , Permeabilidade do Canal Arterial , Canal Arterial , Pneumopatias Obstrutivas , Humanos , Masculino , Canal Arterial/diagnóstico por imagem , Canal Arterial/metabolismo , Canal Arterial/patologia , Linhagem , Dissecção Aórtica/genética , Permeabilidade do Canal Arterial/genética , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/genética , Proteínas de Ligação ao Cálcio/genética , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo
4.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003393

RESUMO

Patent ductus arteriosus (PDA) is a common congenital heart disease. CITED2 plays an important role in the development of the heart, and genetic variants in its coding region are significantly associated with cardiac malformations. However, the role of variants in the promoter region of CITED2 in the development of PDA remains unclear. We extracted the peripheral blood of 646 subjects (including 353 PDA patients and 293 unrelated healthy controls) for sequencing. We identified 13 promoter variants of the CITED2 gene (including 2 novel heterozygous variants). Of the 13 variants, 10 were found only in PDA patients. In mouse cardiomyocytes (HL-1) and rat cardiac myocytes (RCM), the transcriptional activity of the CITED2 gene promoter was significantly changed by the variants (p < 0.05). The results of the experiments of electrophoretic mobility indicated that these variants may affect the transcription of the CITED2 gene by influencing the binding ability of transcription factors. These results, combined with the JASPAR database analysis, showed that the destruction/production of transcription factor binding sites due to the variants in the promoter region of the CITED2 gene may directly or indirectly affect the binding ability of transcription factors. Our results suggest for the first time that variants at the CITED2 promoter region may cause low expression of CITED2 protein related to the formation of PDA.


Assuntos
Permeabilidade do Canal Arterial , Cardiopatias Congênitas , Humanos , Animais , Camundongos , Ratos , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/metabolismo , Cardiopatias Congênitas/genética , Fatores de Transcrição/genética , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Transativadores/genética , Transativadores/metabolismo
5.
J Mol Med (Berl) ; 101(12): 1567-1585, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804474

RESUMO

The ductus arteriosus (DA), bridging the aorta and pulmonary artery, immediately starts closing after birth. Remodeling of DA leads to anatomic obstruction to prevent repatency. Several histological changes, especially extracellular matrices (ECMs) deposition and smooth muscle cells (SMCs) migration bring to anatomic closure. The genetic etiology and mechanism of DA closure remain elusive. We have previously reported a novel copy number variant containing Vav2 in patent ductus arteriosus (PDA) patients, but its specific role in DA closure remains unknown. The present study revealed that the expression of Vav2 was reduced in human patent DA, and it was less enrichment in the adjacent aorta. Matrigel experiments demonstrated that Vav2 could promote SMC migration from PDA patient explants. Smooth muscle cells with Vav2 overexpression also presented an increased capacity in migration and downregulated contractile-related proteins. Meanwhile, SMCs with Vav2 overexpression exhibited higher expression of collagen III and lessened protein abundance of lysyl oxidase, and both changes are beneficial to DA remodeling. Overexpression of Vav2 resulted in increased activity of Rac1, Cdc42, and RhoA in SMCs. Further investigation noteworthily found that the above alterations caused by Vav2 overexpression were particularly reversed by Rac1 inhibitor. A heterozygous, rare Vav2 variant was identified in PDA patients. Compared with the wild type, this variant attenuated Vav2 protein expression and weakened the activation of downstream Rac1, further impairing its functions in SMCs. In conclusion, Vav2 functions as an activator for Rac1 in SMCs to promote SMCs migration, dedifferentiation, and ECMs production. Deleterious variant potentially induces Vav2 loss of function, further providing possible molecular mechanisms about Vav2 in PDA pathogenesis. These findings enriched the current genetic etiology of PDA, which may provide a novel target for prenatal diagnosis and treatment. KEY MESSAGES: Although we have proposed the potential association between Vav2 and PDA incidence through whole exome sequencing, the molecular mechanisms underlying Vav2 in PDA have never been reported. This work, for the first time, demonstrated that Vav2 was exclusively expressed in closed DAs. Moreover, we found that Vav2 participated in the process of anatomic closure by mediating SMCs migration, dedifferentiation, and ECMs deposition through Rac1 activation. Our findings first identified a deleterious Vav2 c.701C>T variant that affected its function in SMCs by impairing Rac1 activation, which may lead to PDA defect. Vav2 may become an early diagnosis and an effective intervention target for PDA clinical therapy.


Assuntos
Permeabilidade do Canal Arterial , Canal Arterial , Feminino , Humanos , Gravidez , Aorta/metabolismo , Movimento Celular , Canal Arterial/metabolismo , Canal Arterial/patologia , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/metabolismo , Permeabilidade do Canal Arterial/patologia , Miócitos de Músculo Liso/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 325(4): H687-H701, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566109

RESUMO

The ductus arteriosus (DA) is a vascular shunt that allows oxygenated blood to bypass the developing lungs in utero. Fetal DA patency requires vasodilatory signaling via the prostaglandin E2 (PGE2) receptor EP4. However, in humans and mice, disrupted PGE2-EP4 signaling in utero causes unexpected patency of the DA (PDA) after birth, suggesting another role for EP4 during development. We used EP4-knockout (KO) mice and acute versus chronic pharmacological approaches to investigate EP4 signaling in DA development and function. Expression analyses identified EP4 as the primary EP receptor in the DA from midgestation to term; inhibitor studies verified EP4 as the primary dilator during this period. Chronic antagonism recapitulated the EP4 KO phenotype and revealed a narrow developmental window when EP4 stimulation is required for postnatal DA closure. Myography studies indicate that despite reduced contractile properties, the EP4 KO DA maintains an intact oxygen response. In newborns, hyperoxia constricted the EP4 KO DA but survival was not improved, and permanent remodeling was disrupted. Vasomotion and increased nitric oxide (NO) sensitivity in the EP4 KO DA suggest incomplete DA development. Analysis of DA maturity markers confirmed a partially immature EP4 KO DA phenotype. Together, our data suggest that EP4 signaling in late gestation plays a key developmental role in establishing a functional term DA. When disrupted in EP4 KO mice, the postnatal DA exhibits signaling and contractile properties characteristic of an immature DA, including impairments in the first, muscular phase of DA closure, in addition to known abnormalities in the second permanent remodeling phase.NEW & NOTEWORTHY EP4 is the primary EP receptor in the ductus arteriosus (DA) and is critical during late gestation for its development and eventual closure. The "paradoxical" patent DA (PDA) phenotype of EP4-knockout mice arises from a combination of impaired contractile potential, altered signaling properties, and a failure to remodel associated with an underdeveloped immature vessel. These findings provide new mechanistic insights into women who receive NSAIDs to treat preterm labor, whose infants have unexplained PDA.


Assuntos
Permeabilidade do Canal Arterial , Canal Arterial , Camundongos , Animais , Recém-Nascido , Feminino , Gravidez , Humanos , Canal Arterial/metabolismo , Dinoprostona/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Permeabilidade do Canal Arterial/genética , Camundongos Knockout
7.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36749647

RESUMO

Based upon our demonstration that the smooth muscle cell-selective (SMC-selective) putative methyltransferase, Prdm6, interacts with myocardin-related transcription factor-A, we examined Prdm6's role in SMCs in vivo using cell type-specific knockout mouse models. Although SMC-specific depletion of Prdm6 in adult mice was well tolerated, Prdm6 depletion in Wnt1-expressing cells during development resulted in perinatal lethality and a completely penetrant patent ductus arteriosus (DA) phenotype. Lineage tracing experiments in Wnt1Cre2 Prdm6fl/fl ROSA26LacZ mice revealed normal neural crest-derived SMC investment of the outflow tract. In contrast, myography measurements on DA segments isolated from E18.5 embryos indicated that Prdm6 depletion significantly reduced DA tone and contractility. RNA-Seq analyses on DA and ascending aorta samples at E18.5 identified a DA-enriched gene program that included many SMC-selective contractile associated proteins that was downregulated by Prdm6 depletion. Chromatin immunoprecipitation-sequencing experiments in outflow tract SMCs demonstrated that 50% of the genes Prdm6 depletion altered contained Prdm6 binding sites. Finally, using several genome-wide data sets, we identified an SMC-selective enhancer within the Prdm6 third intron that exhibited allele-specific activity, providing evidence that rs17149944 may be the causal SNP for a cardiovascular disease GWAS locus identified within the human PRDM6 gene.


Assuntos
Permeabilidade do Canal Arterial , Canal Arterial , Gravidez , Feminino , Camundongos , Humanos , Animais , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/metabolismo , Canal Arterial/metabolismo , Miócitos de Músculo Liso/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos Knockout , Proteínas Repressoras/genética
8.
Am J Med Genet A ; 191(4): 1111-1118, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36607831

RESUMO

Multisystemic smooth muscle dysfunction syndrome (MSMDS, OMIM # 613834) is a rare autosomal dominant condition caused by pathogenetic variants of ACTA2 gene that result in impaired muscle contraction. MSMDS is characterized by an increased susceptibility to aneurismal dilatations and dissections, patent ductus arteriosus, early onset coronary artery disease, congenital mydriasis, chronic interstitial lung disease, hypoperistalsis, hydrops of gall bladder, and hypotonic bladder. Here, we report an early diagnosis of a MSMDS related to ACTA2 p.Arg179His (R179H) mutation in a newborn and performed a review of the literature. An early diagnosis of MSMDS is extremely important, because of the severe involvement of cardiovascular system in the MSMDS. Multidisciplinary care and surveillance and timely management of symptoms are important to reduce the risk of complications.


Assuntos
Permeabilidade do Canal Arterial , Oftalmopatias Hereditárias , Midríase , Distúrbios Pupilares , Recém-Nascido , Humanos , Permeabilidade do Canal Arterial/genética , Midríase/diagnóstico , Midríase/genética , Mutação , Oftalmopatias Hereditárias/genética , Actinas/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-36307211

RESUMO

We provide the first study of two siblings with a novel autosomal recessive LRP1-related syndrome identified by rapid genome sequencing and overlapping multiple genetic models. The patients presented with respiratory distress, congenital heart defects, hypotonia, dysmorphology, and unique findings, including corneal clouding and ascites. Both siblings had compound heterozygous damaging variants, c.11420G > C (p.Cys3807Ser) and c.12407T > G (p.Val4136Gly) in LRP1, in which segregation analysis helped dismiss additional variants of interest. LRP1 analysis using multiple human/mouse data sets reveals a correlation to patient phenotypes of Peters plus syndrome with additional severe cardiomyopathy and blood vessel development complications linked to neural crest cells.


Assuntos
Fenda Labial , Permeabilidade do Canal Arterial , Cardiopatias Congênitas , Deformidades Congênitas dos Membros , Animais , Humanos , Camundongos , Fenda Labial/complicações , Doenças da Córnea/metabolismo , Permeabilidade do Canal Arterial/complicações , Permeabilidade do Canal Arterial/genética , Deformidades Congênitas dos Membros/complicações , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Síndrome , Doenças Ósseas/complicações , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Pneumopatias/complicações , Pneumopatias/genética , Pneumopatias/metabolismo
10.
Am J Med Genet A ; 188(8): 2389-2396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567597

RESUMO

Pathogenic variants in ACTA2, encoding smooth muscle α-actin, predispose to thoracic aortic aneurysms and dissections. ACTA2 variants altering arginine 179 predispose to a more severe, multisystemic disease termed smooth muscle dysfunction syndrome (SMDS; OMIM 613834). Vascular complications of SMDS include patent ductus arteriosus (PDA) or aortopulmonary window, early-onset thoracic aortic disease (TAD), moyamoya-like cerebrovascular disease, and primary pulmonary hypertension. Patients also have dysfunction of other smooth muscle-dependent systems, including congenital mydriasis, hypotonic bladder, and gut hypoperistalsis. Here, we describe five patients with novel heterozygous ACTA2 missense variants, p.Arg179Gly, p.Met46Arg, p.Thr204Ile, p.Arg39Cys, and p.Ile66Asn, who have clinical complications that align or overlap with SMDS. Patients with the ACTA2 p.Arg179Gly and p.Thr204Ile variants display classic features of SMDS. The patient with the ACTA2 p.Met46Arg variant exhibits exclusively vascular complications of SMDS, including early-onset TAD, PDA, and moyamoya-like cerebrovascular disease. The patient with the ACTA2 p.Ile66Asn variant has an unusual vascular complication, a large fusiform internal carotid artery aneurysm. The patient with the ACTA2 p.Arg39Cys variant has pulmonary, gastrointestinal, and genitourinary complications of SMDS but no vascular manifestations. Identifying pathogenic ACTA2 variants associated with features of SMDS is critical for aggressive surveillance and management of vascular and nonvascular complications and delineating the molecular pathogenesis of SMDS.


Assuntos
Actinas , Aneurisma da Aorta Torácica , Transtornos Cerebrovasculares , Permeabilidade do Canal Arterial , Doença de Moyamoya , Actinas/genética , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/genética , Permeabilidade do Canal Arterial/genética , Heterozigoto , Humanos , Doença de Moyamoya/genética , Músculo Liso , Mutação , Fenótipo
11.
Arterioscler Thromb Vasc Biol ; 42(6): 732-742, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35443793

RESUMO

OBJECTIVE: Failure to close the ductus arteriosus, patent ductus arteriosus, accounts for 10% of all congenital heart defects. Despite significant advances in patent ductus arteriosus management, including pharmacological treatment targeting the prostaglandin pathway, a proportion of patients fail to respond and must undergo surgical intervention. Thus, further refinement of the cellular and molecular mechanisms that govern vascular remodeling of this vessel is required. METHODS: We performed single-cell RNA-sequencing of the ductus arteriosus in mouse embryos at E18.5 (embryonic day 18.5), and P0.5 (postnatal day 0.5), and P5 to identify transcriptional alterations that might be associated with remodeling. We further confirmed our findings using transgenic mouse models coupled with immunohistochemistry analysis. RESULTS: The intermediate filament vimentin emerged as a candidate that might contribute to closure of the ductus arteriosus. Indeed, mice with genetic deletion of vimentin fail to complete vascular remodeling of the ductus arteriosus. To seek mechanisms, we turned to the RNA-sequencing data that indicated changes in Jagged1 with similar profile to vimentin and pointed to potential links with Notch. In fact, Notch3 signaling was impaired in vimentin null mice and vimentin null mice phenocopies patent ductus arteriosus in Jagged1 endothelial and smooth muscle deleted mice. CONCLUSIONS: Through single-cell RNA-sequencing and by tracking closure of the ductus arteriosus in mice, we uncovered the unexpected contribution of vimentin in driving complete closure of the ductus arteriosus through a mechanism that includes deregulation of the Notch signaling pathway.


Assuntos
Permeabilidade do Canal Arterial , Canal Arterial , Animais , Canal Arterial/metabolismo , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Camundongos , RNA , Remodelação Vascular , Vimentina/genética , Vimentina/metabolismo
12.
Neuroradiology ; 64(9): 1773-1780, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35420309

RESUMO

The clinical and neuroimaging findings of a family with a variant ACTA2 gene (c351C > G), presenting with smooth muscle dysfunction in structures of neural crest derivation, are discussed. The combination of aortic abnormalities, patent ductus arteriosus, congenital mydriasis and distinctive cerebrovascular and brain morphological abnormalities characterise this disorder. Two sisters, heterozygous for the variant, and their mother, a mosaic, are presented. Brain parenchymal changes are detailed for the first time in a non-Arg179His variant. Radiological features of the petrous canal and external carotid are highlighted. We explore the potential underlying biological and embryological mechanisms.


Assuntos
Permeabilidade do Canal Arterial , Oftalmopatias Hereditárias , Midríase , Actinas , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/patologia , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/patologia , Feminino , Humanos , Músculo Liso/patologia , Midríase/genética , Midríase/patologia , Neuroimagem
14.
Pediatr Res ; 91(4): 903-911, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33837257

RESUMO

BACKGROUND: DNA polymorphisms in PTGIS and TFAP2B have been identified as risk factors for patent ductus arteriosus (PDA) in a population composed of preterm infants with European genetic ancestry but not in more genetically diverse populations. GOAL: To determine if the effects of TFAP2B and PTGIS polymorphisms on ductus arteriosus (DA) gene expression differ based on genetic ancestry. METHODS: DA from 273 human second trimester fetuses were genotyped for TFAP2B and PTGIS polymorphisms and for polymorphisms distributing along genetic ancestry lines. RT-PCR was used to measure the RNA expression of 49 candidate genes involved with DA closure. RESULTS: Seventeen percent of the DA analyzed were of European ancestry. In multivariable regression analyses we found consistent associations between four PDA-related TFAP2B polymorphisms (rs2817399(A), rs987237(G), rs760900(C), and rs2817416(C)) and expression of the following genes: EPAS1, CACNB2, ECE1, KCNA2, ATP2A3, EDNRA, EDNRB, BMP9, and BMP10, and between the PTGIS haplotype rs493694(G)/rs693649(A) and PTGIS and NOS3. These changes only occurred in DA with European ancestry. No consistent positive or negative associations were found among DA samples unless an interaction between the polymorphisms and genetic ancestry was taken into account. CONCLUSION: PTGIS and TFAP2B polymorphisms were associated with consistent changes in DA gene expression when present in fetuses with European ancestry. IMPACT: DNA polymorphisms in PTGIS and TFAP2B have been identified as risk factors for patent ductus arteriosus (PDA) in a population composed primarily of preterm infants with European genetic ancestry but not in more genetically diverse populations. The same PTGIS and TFAP2B polymorphisms are associated with changes in ductus gene expression when present in ductus from fetuses with European genetic ancestry. No consistent associations with gene expression can be found unless an interaction between the polymorphisms and genetic ancestry is taken into account.


Assuntos
Permeabilidade do Canal Arterial , Canal Arterial , Proteínas Morfogenéticas Ósseas/genética , DNA/genética , Canal Arterial/metabolismo , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/metabolismo , Expressão Gênica , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro
15.
Mol Genet Genomic Med ; 9(11): e1814, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34672437

RESUMO

BACKGROUND: Pathogenic variants in MYH11 are associated with either heritable thoracic aortic aneurysm and dissection (HTAAD), patent ductus arteriosus (PDA) syndrome, or megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). METHODS AND RESULTS: We report a family referred for molecular diagnosis with HTAAD/PDA phenotype in which we found a variant at a non-conserved position of the 5' donor splice site of intron 32 of MYH11 potentially altering splicing (NM_002474.3:c.4578+3A>C). Although its cosegregation with disease was observed, it remained of unknown significance. Later, aortic surgery in the proband gave us the opportunity to perform a transcript analysis. This showed a skipping of the exon 32, an RNA defect previously reported to be translated to an in-frame loss of 71 amino acids and a dominant-negative effect in the smooth muscle myosin rod. This RNA defect is also reported in 3 other HTAAD/PDA pedigrees. CONCLUSION: This report confirms that among rare variants in MYH11, skipping of exon 32 is recurrent. This finding is of particular interest to establish complex genotype-phenotype correlations where some alleles are associated with autosomal dominant HTAAD/PDA, while others result in recessive or dominant visceral myopathies.


Assuntos
Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Permeabilidade do Canal Arterial/genética , Cadeias Pesadas de Miosina/genética , Sítios de Splice de RNA , Dissecção Aórtica/patologia , Aneurisma da Aorta Torácica/patologia , Permeabilidade do Canal Arterial/patologia , Éxons , Humanos , Masculino , Mutação , Splicing de RNA , Adulto Jovem
16.
Xenobiotica ; 51(11): 1335-1342, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34529545

RESUMO

Acetaminophen is gaining importance as a first-line drug for treating patent ductus arteriosus (PDA) in neonates. Predominant metabolites of acetaminophen in preterm neonates vary from that of adults; and the drug is predominantly metabolised by conjugation and partly by Cytochrome P450 (CYP) enzymes.We carried out the present study to identify the principal urine metabolites of acetaminophen (glucuronide/sulphate) in preterm neonates with hemodynamically significant PDA receiving intravenous acetaminophen, and to evaluate the prevalence of single nucleotide polymorphisms (SNPs) in the key CYP enzymes (CYP1A2*3, CYP1A2*4, CYP1A2*1C, CYP1A2*1K, CYP1A2*6, CYP2D6*10, CYP2E1*2, CYP2E1*5B, CYP3A4*1B, CYP3A4*2, CYP3A4*3, CYP3A5*3, CYP3A5*7, and CYP3A5*11) and their effect on urinary metabolites and serum acetaminophen concentrations.Nineteen (32.8%) neonates had heterozygous CYP1A2*1C, two (3.3%) with heterozygous CYP1A2*1K, 15 (27.8%) and two (3.7%) had heterozygous and homozygous CYP2D6*10, two (3.7%) had heterozygous CYP2E1*5B, seven (12.3%) and three (5.3%) had heterozygous and homozygous CYP3A4*1B, and three (5.5%) had CYP3A5*7 amongst the study population. Acetaminophen sulphate predominated over glucuronide metabolite at all time points. Postnatal days of life was significantly associated with an increase in the urine acetaminophen metabolites with decreased serum acetaminophen concentrations.A significant prevalence of SNPs in the key CYP enzymes related to acetaminophen metabolism was observed in our neonatal population. Population pharmacokinetic-pharmacodynamic modelling incorporating genetic and metabolite data is urgently needed for implementation of precision medicine in this vulnerable population.


Assuntos
Permeabilidade do Canal Arterial , Acetaminofen , Administração Intravenosa , Adulto , Sistema Enzimático do Citocromo P-450/genética , Permeabilidade do Canal Arterial/tratamento farmacológico , Permeabilidade do Canal Arterial/genética , Humanos , Recém-Nascido , Polimorfismo Genético
17.
Int J Cancer ; 149(6): 1221-1227, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720400

RESUMO

To date, the AP-2 family of transcription factors comprises five members. Transcription factor AP-2beta (TFAP2B)/AP-2ß was first described in 1995. Several studies indicate a critical role of AP-2ß in the development of tissues and organs of ectodermal, neuroectodermal and also mesodermal origin. Germline mutation of TFAP2B is known to cause the Char syndrome, an autosomal dominant disorder characterized by facial dysmorphism, patent ductus arteriosus and anatomical abnormalities of the fifth digit. Furthermore, single-nucleotide polymorphisms in TFAP2B were linked to obesity and specific personality traits. In neoplasias, AP-2ß was first described in alveolar rhabdomyosarcoma. Immunohistochemical staining of AP-2ß is a recommended ancillary test for the histopathological diagnosis of this uncommon childhood malignancy. In neuroblastoma, AP-2ß supports noradrenergic differentiation. Recently, the function of AP-2ß in breast cancer (BC) has gained interest. AP-2ß is associated with the lobular BC subtype. Moreover, AP-2ß controls BC cell proliferation and has a prognostic impact in patients with BC. This review provides a comprehensive overview of the current knowledge about AP-2ß and its function in organ development, differentiation and tumorigenesis.


Assuntos
Anormalidades Múltiplas/genética , Permeabilidade do Canal Arterial/genética , Face/anormalidades , Dedos/anormalidades , Neoplasias/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Anormalidades Múltiplas/metabolismo , Proliferação de Células , Permeabilidade do Canal Arterial/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Mutação em Linhagem Germinativa , Humanos , Neoplasias/genética , Polimorfismo de Nucleotídeo Único
18.
Mol Med Rep ; 22(5): 3895-3903, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000225

RESUMO

Potassium­channel tetramerization-domain-containing 1 (KCTD1) mutations are reported to result in scalp­ear­nipple syndrome. These mutations occur in the conserved broad­complex, tramtrack and bric a brac domain, which is associated with inhibited transcriptional activity. However, the mechanisms of KCTD1 mutants have not previously been elucidated; thus, the present study aimed to investigate whether KCTD1 mutants affect their interaction with transcription factor AP­2α and their regulation of the Wnt pathway. Results from the present study demonstrated that none of the ten KCTD1 mutants had an inhibitory effect on the transcriptional activity of AP­2α. Co­immunoprecipitation assays demonstrated that certain mutants exhibited changeable localization compared with the nuclear localization of wild­type KCTD1, but no KCTD1 mutant interacted with AP­2α. Almost all KCTD1 mutants, except KCTD1 A30E and H33Q, exhibited differential inhibitory effects on regulating TOPFLASH luciferase reporter activity. In addition, the interaction region of KCTD1 to the PY motif (amino acids 59­62) in AP­2α was identified. KCTD1 exhibited no suppressive effects on the transcriptional activity of the AP­2α P59A mutant, resulting in Char syndrome, a genetic disorder characterized by a distinctive facial appearance, heart defect and hand abnormalities, by altered protein cellular localization that abolished protein interactions. However, the P59A, P60A, P61R and 4A AP­2α mutants inhibited TOPFLASH reporter activity. Moreover, AP­2α and KCTD1 inhibited ß­catenin expression levels and SW480 cell viability. The present study thus identified a putative mechanism of disease­related KCTD1 mutants and AP­2α mutants by disrupting their interaction with the wildtype proteins AP­2α and KCTD1 and influencing the regulation of the Wnt/ß­catenin pathway.


Assuntos
Anormalidades Múltiplas/metabolismo , Proteínas Correpressoras/metabolismo , Permeabilidade do Canal Arterial/metabolismo , Orelha Externa/anormalidades , Face/anormalidades , Dedos/anormalidades , Hipospadia/metabolismo , Hipotonia Muscular/metabolismo , Proteínas Mutantes/metabolismo , Mamilos/anormalidades , Couro Cabeludo/anormalidades , Fator de Transcrição AP-2/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Anormalidades Múltiplas/genética , Sobrevivência Celular/genética , Proteínas Correpressoras/genética , Permeabilidade do Canal Arterial/genética , Orelha Externa/metabolismo , Células HEK293 , Células HeLa , Humanos , Hipospadia/genética , Imunoprecipitação , Hipotonia Muscular/genética , Mutação , Mamilos/metabolismo , Fenótipo , Ligação Proteica , Couro Cabeludo/metabolismo , Fator de Transcrição AP-2/genética , Transfecção
19.
Eur Rev Med Pharmacol Sci ; 24(14): 7732-7744, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32744700

RESUMO

OBJECTIVE: Familial hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. While sarcomeric gene mutations explain many HCM cases, the genetic basis of about half of HCM cases remains elusive. Here we aimed to identify the gene causing HCM in a non-consanguineous Saudi Arabian family with affected family members and a history of sudden death. The impact of the identified mutation on protein structure and potential drug targets were evaluated in silico. MATERIALS AND METHODS: Triplets (two HCM subjects and one patent ductus arteriosus (PDA) case) and unaffected parents were screened by targeted next-generation sequencing (NGS) for 181 candidate cardiomyopathy genes. In silico structural and functional analyses, including protein modeling, structure prediction, drug screening, drug binding, and dynamic simulations were performed to explore the potential pathogenicity of the variant and to identify candidate drugs. RESULTS: A homozygous missense mutation in exon 1 of TMP1 (assembly GRCh37-chr15: 63340781; G>A) was identified in the triplets [two HCM and one patent ductus arteriosus (PDA)] that substituted glycine for arginine at codon 3 (p.Gly3Arg). The parents were heterozygous for the variant. The mutation was predicted to cause a significant and deleterious change in the TPM1 protein structure that slightly affected drug binding, stability, and conformation. In addition, we identified several putative TPM1-targeting drugs through structure-based in silico screening. CONCLUSIONS: TPM1 mutations are a common cause of HCM and other congenital heart defects. To date, TPM1 has not been associated with isolated PDA; to our knowledge, this is the first report of the homozygous missense variation p.Gly3Arg in TPM1 associated with familial autosomal recessive pediatric HCM and PDA. The identified candidate TPM1 inhibitors warrant further prospective investigation.


Assuntos
Cardiomiopatia Dilatada/genética , Permeabilidade do Canal Arterial/genética , Mutação de Sentido Incorreto , Trigêmeos/genética , Tropomiosina/genética , Adulto , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/metabolismo , Criança , Análise Mutacional de DNA , Permeabilidade do Canal Arterial/diagnóstico , Permeabilidade do Canal Arterial/tratamento farmacológico , Permeabilidade do Canal Arterial/metabolismo , Feminino , Predisposição Genética para Doença , Hereditariedade , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Linhagem , Fenótipo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Tropomiosina/metabolismo , Adulto Jovem
20.
Arterioscler Thromb Vasc Biol ; 40(9): 2212-2226, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640908

RESUMO

OBJECTIVE: The ductus arteriosus (DA) is a fetal artery connecting the aorta and pulmonary arteries. Progressive matrix remodeling, that is, intimal thickening (IT), occurs in the subendothelial region of DA to bring anatomic DA closure. IT is comprised of multiple ECMs (extracellular matrices) and migrated smooth muscle cells (SMCs). Because glycoprotein fibulin-1 binds to multiple ECMs and regulates morphogenesis during development, we investigated the role of fibulin-1 in DA closure. Approach and Results: Fibulin-1-deficient (Fbln1-/-) mice exhibited patent DA with hypoplastic IT. An unbiased transcriptome analysis revealed that EP4 (prostaglandin E receptor 4) stimulation markedly increased fibulin-1 in DA-SMCs via phospholipase C-NFκB (nuclear factor κB) signaling pathways. Fluorescence-activated cell sorting (FACS) analysis demonstrated that fibulin-1 binding protein versican was derived from DA-endothelial cells (ECs). We examined the effect of fibulin-1 on directional migration toward ECs in association with versican by using cocultured DA-SMCs and ECs. EP4 stimulation promoted directional DA-SMC migration toward ECs, which was attenuated by either silencing fibulin-1 or versican. Immunofluorescence demonstrated that fibulin-1 and versican V0/V1 were coexpressed at the IT of wild-type DA, whereas 30% of versican-deleted mice lacking a hyaluronan binding site displayed patent DA. Fibulin-1 expression was attenuated in the EP4-deficient mouse (Ptger4-/-) DA, which exhibits patent DA with hypoplastic IT, and fibulin-1 protein administration restored IT formation. In human DA, fibulin-1 and versican were abundantly expressed in SMCs and ECs, respectively. CONCLUSIONS: Fibulin-1 contributes to DA closure by forming an environment favoring directional SMC migration toward the subendothelial region, at least, in part, in combination with EC-derived versican and its binding partner hyaluronan.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade do Canal Arterial/metabolismo , Canal Arterial/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Canal Arterial/anormalidades , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/patologia , Células Endoteliais/patologia , Matriz Extracelular/genética , Matriz Extracelular/patologia , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Técnicas de Cultura de Órgãos , Proteína Quinase C/metabolismo , Ratos Wistar , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...